Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Vaccines (Basel) ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2299071

ABSTRACT

Drawing upon theories of risk and decision making, we present a theoretical framework for how the emotional attributes of social media content influence risk behaviors. We apply our framework to understanding how COVID-19 vaccination Twitter posts influence acceptance of the vaccine in Peru, the country with the highest relative number of COVID-19 excess deaths. By employing computational methods, topic modeling, and vector autoregressive time series analysis, we show that the prominence of expressed emotions about COVID-19 vaccination in social media content is associated with the daily percentage of Peruvian social media survey respondents who are vaccine-accepting over 231 days. Our findings show that net (positive) sentiment and trust emotions expressed in tweets about COVID-19 are positively associated with vaccine acceptance among survey respondents one day after the post occurs. This study demonstrates that the emotional attributes of social media content, besides veracity or informational attributes, may influence vaccine acceptance for better or worse based on its valence.

2.
Front Public Health ; 11: 1087698, 2023.
Article in English | MEDLINE | ID: covidwho-2297808

ABSTRACT

Incarcerated individuals are a highly vulnerable population for infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the transmission of respiratory infections within prisons and between prisons and surrounding communities is a crucial component of pandemic preparedness and response. Here, we use mathematical and statistical models to analyze publicly available data on the spread of SARS-CoV-2 reported by the Ohio Department of Rehabilitation and Corrections (ODRC). Results from mass testing conducted on April 16, 2020 were analyzed together with time of first reported SARS-CoV-2 infection among Marion Correctional Institution (MCI) inmates. Extremely rapid, widespread infection of MCI inmates was reported, with nearly 80% of inmates infected within 3 weeks of the first reported inmate case. The dynamical survival analysis (DSA) framework that we use allows the derivation of explicit likelihoods based on mathematical models of transmission. We find that these data are consistent with three non-exclusive possibilities: (i) a basic reproduction number >14 with a single initially infected inmate, (ii) an initial superspreading event resulting in several hundred initially infected inmates with a reproduction number of approximately three, or (iii) earlier undetected circulation of virus among inmates prior to April. All three scenarios attest to the vulnerabilities of prisoners to COVID-19, and the inability to distinguish among these possibilities highlights the need for improved infection surveillance and reporting in prisons.


Subject(s)
COVID-19 , Prisoners , Humans , Prisons , COVID-19/epidemiology , Ohio/epidemiology , SARS-CoV-2
3.
J Theor Biol ; 561: 111404, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2231875

ABSTRACT

As the Coronavirus 2019 disease (COVID-19) started to spread rapidly in the state of Ohio, the Ecology, Epidemiology and Population Health (EEPH) program within the Infectious Diseases Institute (IDI) at The Ohio State University (OSU) took the initiative to offer epidemic modeling and decision analytics support to the Ohio Department of Health (ODH). This paper describes the methodology used by the OSU/IDI response modeling team to predict statewide cases of new infections as well as potential hospital burden in the state. The methodology has two components: (1) A Dynamical Survival Analysis (DSA)-based statistical method to perform parameter inference, statewide prediction and uncertainty quantification. (2) A geographic component that down-projects statewide predicted counts to potential hospital burden across the state. We demonstrate the overall methodology with publicly available data. A Python implementation of the methodology is also made publicly available. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Ohio/epidemiology , Pandemics , Hospitals
4.
Sci Rep ; 12(1): 9832, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1890256

ABSTRACT

Understanding how different online communities engage with COVID-19 misinformation is critical for public health response. For example, misinformation confined to a small, isolated community of users poses a different public health risk than misinformation being consumed by a large population spanning many diverse communities. Here we take a longitudinal approach that leverages tools from network science to study COVID-19 misinformation on Twitter. Our approach provides a means to examine the breadth of misinformation engagement using modest data needs and computational resources. We identify a subset of accounts from different Twitter communities discussing COVID-19, and follow these 'sentinel nodes' longitudinally from July 2020 to January 2021. We characterize sentinel nodes in terms of a linked domain preference score, and use a standardized similarity score to examine alignment of tweets within and between communities. We find that media preference is strongly correlated with the amount of misinformation propagated by sentinel nodes. Engagement with sensationalist misinformation topics is largely confined to a cluster of sentinel nodes that includes influential conspiracy theorist accounts. By contrast, misinformation relating to COVID-19 severity generated widespread engagement across multiple communities. Our findings indicate that misinformation downplaying COVID-19 severity is of particular concern for public health response. We conclude that the sentinel node approach can be an effective way to assess breadth and depth of online misinformation penetration.


Subject(s)
COVID-19 , Lymphadenopathy , Social Media , Communication , Humans , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL